vsanSparse Tech Note

July 06, 2017

vmware Page 1 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

Table of Contents

1. Introduction

1.1.Introduction
1.2.Virtual Machine Snapshot Overview

2. Introducing vsanSparse Snapshots

2.1.Introducing vsanSparse Snapshots

2.2.Why is vsanSparse Needed?

2.3.How Does vsanSparse Work?

2.4.In-Memory Cache Considerations

2.5.How Does an Administrator Utilize vsanSparse?

3. vsanSparse Considerations

3.1.Homogeneous Snapshot Types

3.2.Requirements and Limitations

3.3.Read Cache Reservation Consumption Considerations
3.4.Monitoring vSAN Read Cache

3.5.vSAN Datastore Capacity Consumption Consideration
3.6.Monitoring vSAN Capacity

4. Conclusions

4.1.Snapshot Retention Period
4.2.Snapshots Per Chain

5. Appendix A: Other Snapshot Formats

vmware

5.1.vmfsSparse
5.2.Space Efficient (SE) Sparse

Page 2 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

1. Introduction

Introduction & Overview

vmware Page 3 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

1.1 Introduction

vSAN 6.0 introduces a new on-disk format that includes VirstoFS technology. This always-sparse
filesystem provides the basis for a new snapshot format, also introduced with vSAN 6.0, called
vsanSparse. Through the use of the underlying sparseness of the filesystem and a new, in-memory
metadata cache for lookups, vsanSparse offers greatly improved performance when compared to
previous virtual machine snapshot implementations.

1.2 Virtual Machine Snapshot Overview

VMware, through the use of VM snapshots, provides the ability to capture a point-in-time (PIT) state of
a virtual machine. This includes the virtual machine’s storage, memory and other devices such as
virtual NICs, etc. Using the Snapshot Manager in the vSphere client, administrators can create, revert
or delete VM snapshots. A chain of up to 32 snapshots is supported.

Snapshots can capture virtual machines that are powered-on, powered-off or even suspended. When
the virtual machine is powered-on, there is an option to capture the virtual machine’s memory state,
and allow the virtual machine to be reverted to powered-on a point in time.

There is also a “quiesce” option. If this option is selected when taking a snapshot of a powered-on
virtual machine, VMware Tools may use either its own sync driver or VSS (Microsoft’s Volume Shadow
Copy Service) to quiesce not only the guest OS filesystem, but also any Microsoft applications that
understand VSS directives. This allows for application consistent backups of virtual machines, a typical
use case for virtual machine snapshots.

For further information on how to use virtual machine snapshots in vSphere environments, please refer
to the official vSphere documentation on VMware.com.

Vrl'lwal’e’ Page 4 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

http://www.vmware.com/

vsanSparse Tech Note

2. Introducing vsanSparse Snapshots

introduction to vVSANSparse Snapshots

vmware Page 5 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

2.1 Introducing vsanSparse Snapshots

As mentioned in the introduction, vSAN 6.0 has a new on-disk (v2) format that facilitates the
introduction of a new type of performance-based snapshot. The new vsanSparse format leverages the
underlying sparseness of the new VirstoFS filesystem (v2) on-disk format and a new in-memory
caching mechanism for tracking updates. This v2 format is an always-sparse file system (512-byte
block size instead of 1MB block size on VMFS-L) and is only available with vSAN 6.0.

Disk Format

Snapshots and Clone

(J 1|&. { 11& ') llEﬂ

* New On-Disk Format « Larger supported capacity

VMFS-L VirstoFS
P ’A Y’,/‘\

zl

» New delta-disk type of snapshots and clones
vsanSparse per VMs
 Performance Based « 32 per Virtual Machine

snapshots and clones

When a virtual machine snapshot is created on vSAN 5.5, a vmfsSparse/redo log object is created (you
can find out more about this format in appendix A of this paper). In vSAN 6.0, when a virtual machine
snapshot is created, vsanSparse “delta” objects get created.

2.2 Why is vsanSparse Needed?

The new vsanSparse snapshot format provides vSAN administrators with enterprise class snapshots

and clones. The goal is to improve snapshot performance by continuing to use the existing redo logs
mechanism but now utilizing an “in-memory” metadata cache and a more efficient sparse filesystem
layout.

2.3 How Does vsanSparse Work?

When a vsanSparse snapshot is taken of a base disk, a child delta disk is created. The parent is now
considered a point-in-time (PIT) copy. The running point of the virtual machine is now the delta. New
writes by the virtual machine go to the delta but the base disk and other snapshots in the chain satisfy
reads. To get current state of the disk, one can take the “parent” disk and redo all writes from
“children” chain. Thus children are referred to as “redo logs”. In this way, vsanSparse format is very
similar to the earlier vmfsSparse format.

However snapshots created with the vsanSparse format on VirstoFS can operate at much closer base
disk performance levels than vmfsSparse/redo log format, even as the length of snapshot chain

vmware Page 6 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

increases. More details on improved performance are provided in the performance section of this
tech-note.

When discussing vSAN, we talk about objects. A delta disk (snapshot) object is made up of a set of
grains, where each grain is a block of sectors containing virtual disk data. A VMDK object backs each
delta. The deltas keep only changed grains, so they are space efficient.

In the diagram below, the Base disk object is called Disk.vmdk and is at the bottom of the chain. There
are three snapshot objects (Disk-001.vmdk, Disk-002.vmdk and Disk-003.vmdk) taken at various
intervals and guest OS writes are also occurring at various intervals, leading to changes in snapshot

deltas.
* Base object — writes to grain 1,2,3 & 5
* Delta object Disk-001 — writes to grain 1 & 4
* Delta object Disk-002 — writes to grain 2 & 4

Delta object Disk-003 — writes to grain 1 & 6
A read by the VM will now return the following:

* Grain 1 — retrieved from Delta object Disk-003

* Grain 2 - retrieved from Delta object Disk-002

* Grain 3 - retrieved from Base object

* Grain 4 — retrieved from Delta object Disk-002

* Grain 5 — retrieved from Base object - O returned as it was never written
* Grain 6 — retrieved from Delta object Disk-003

VM reads
this
VM wries ore MK o D e

Delta disk 3 storage: object <uuid>

Disk-003.vmdk E

Delta disk 2 storage: object <uuid>
sk 02k E K
Delta disk 1 storage: object <uuid>

Disk-001.vmdk LJ__ = L_J

Base disk storage: object <uuid>

= EEK) m

The new vsanSparse snapshot format and the underlying VirstoFS filesystem both use a 512-byte
allocation unit size, which allows snapshots taken with the vsanSparse format to always remain sparse.

Vrl'lwal’e’ Page 7 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

Partition 4KB Writes
Created

Guest OS

The 4KB Guest OS write is backed by 8 grains in the VMDK object

4MB chunks
(8000 x 512, not
drawn to scale)

vsanSparse VMDK

vsanSparse format grows in 4MB chunks, but grain size is 512 bytes
Writes from the guest OS are placed on same logical offsets in the object.

VirstoFS:
Sparse
Filesystem
(512 byte)

VirstoFS

VSAN 6.0 Datastore — v2 on-disk format
Same offsets and 4MB range mappings as vsanSparse

Consider the case when a snapshot has been taken of a virtual machine. When a guest OS sends a
write to disk, the vsanSparse driver receives the write. Writes always goes to the top-most object in the
snapshot chain. When the write is acknowledged, the vsanSparse driver updates its “in-memory”
metadata cache, and confirms the write back to the guest OS. On subsequent reads, the vsanSparse
driver can reference its metadata cache and on a cache hit, immediately locate the data block.

0 VM reads this
VM writes here
Delta disk 3 storage: object <uuid> VSCSI
Disk-003.vmdk m

Disk-002.vmdk

Disk-001.vmdk

3 ——
3 4 3

= =y =rp p= NS i \J /

Base disk storage: object >

= EEK

In-memory
read cache

Reads are serviced from one or more of the vsanSparse deltas in the snapshot tree. The vsanSparse
driver checks the “in-memory” metadata cache to determine which delta or deltas to read. This
depends on what parts of the data were written in a particular snapshot level. Therefore to satisfy a
read I/O request, the snapshot logic does not need to traverse through every delta of the snapshot
tree, but can go directly to the necessary vsanSparse delta and retrieves the data requested.

Reads are sent to all deltas that have the necessary data in parallel.

Vrl'lwal’e’ Page 8 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

New writes
go to the

New writes
go to the
delta. delta.
RW RW Updgte the Upd:te the
in-mert?ory in-mecrhn:ry
VMDK : VMDK-001 caene : VMDK-002 “
(running) " "'°"'°" (running) " """'"" (running)
cache cache
Reads come RO RO
provous VMDK R VMDK-001
delta or base m -
after (PIT 1) deﬁ;e;'fggse (PIT 2)
referencing after
n-memt i
"o ey RO
cache
VMDK
(PIT1)
Base Snapshot 1 Snapshot 2

On a cache miss, however the vsanSparse driver must still traverse each layer to fetch the latest data.
This is done in a similar way to read requests in so far as the requests are sent to ALL layers are send in
parallel.

2.4 In-Memory Cache Considerations

The vsanSparse in-memory cache initially has “unknown” ranges. In other words, cache is cold. When
there is a read request from an unknown range, a cache miss is generated. This range is then retrieved
and cached for future requests. A cache miss increases the 1/O latency.

Cache is in-memory only and is never committed to persistent storage. This raises the question about
what happens when there is a host failure. A power failure, a reboot or simply a VM power off leads to
cache erases. Therefore the next time the virtual disk is opened, the cache is cold (empty) and will be
filled up as the VM generates I/O, with the first I/O paying 'cache fill’ latency penalty.

2.5 How Does an Administrator Utilize vsanSparse?

A vSphere administrator manages vsanSparse snapshots in exactly the same way that previous virtual
machine snapshots were managed. There is no selection process to choose vsanSparse format. If the
underlying is storage is VSAN, if the on-disk format is v2, and if there are no older vmfsSparse/redo log
format snapshots on the virtual machine, vsanSparse format snapshots will be automatically used.

This can easily be verified by checking the snapshot descriptor file in the home namespace of the
virtual machine. The type of snapshot will be shown as “VSANSPARSE”:

vmware Page 9 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

> cat ch-vsan-desktop-000001.vmdk
Disk DescriptorFile
version=4
encoding="UTF-8"
CID=0c4e9289
parentCID=34cbbflc
isNativeSnapshot="no"
createType="vsanSparse"
parentFileNameHint="ch-vsan-desktop.vmdk"
Extent description
RW 209715200 VSANSPARSE "vsan://7c110055-06d0-£fd51-28dc-001517a69c72"

The Disk Data Base
#DDB

ddb.longContentID = "7000cbcbd7b039455788be5b0c4e9289"

Vl"ﬂwal’e’ Page 10 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

3. vsanSparse Considerations

There are a number of considerations for administrators who plan to use vsanSparse format snapshots.
These are outlined here.

Vl"ﬂwal’e’ Page 11 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

3.1 Homogeneous Snapshot Types

Administrators cannot mix vmfsSparse and vsanSparse snapshot format in a chain. All disks in a
vsanSparse chain need to be vsanSparse (except the base disk). As an aside, administrators cannot
create linked clones of a virtual machine with vsanSparse snapshots on datastores other than a (v2)
VirstoFS on-disk format VSAN datastore, e.g. VMFS, NFS, (v1) VMFS-L on-disk format VSAN
datastore.

If a virtual machine has existing vmfsSparse/redo log based snapshots, it will continue to get
vmfsSparse/redo log based snapshots until the user consolidates and deletes all of the current
snapshots.

3.2 Requirements and Limitations

To be able to use vsanSparse, the following requirements must be met:

* VSAN 6.0 only
* On-disk format v2 only (VirstoFS)
* No existing vmfsSparse/redo log format snapshots

3.3 Read Cache Reservation Consumption Considerations

Intensive use of snapshots on hybrid vSAN 6.0 hybrid deployments may lead to higher than normal
consumption of read cache resources. This may result in other workloads becoming temporarily cache
starved, and/or snapshots themselves to perform poorly, depending on the scenario.

It is important to understand how read cache is allocated to fully explain this issue. Read cache on
vSAN is allocated on a 1MB chunk basis. This is because we expect subsequent reads to be proximal to
the previous read, and thus we ensure a read cache hit. Consider the diagram below. There is 1MB of
read cache allocated to the virtual machine. A snapshot is taken of the virtual machine, “snap 17, and a
single new 4KB read is initiated by the guest OS. 1MB of read cache is allocated to “snap 1” to
accommodate this read. Now consider a new snapshot, “snap 27 taken against the same virtual
machine. Another single, new 4KB read operation is initiated by the guest OS, but it is not proximal to
the previous read. Therefore another 1MB of read cache is allocated. There is now a total of 3MB of
read cache allocated for this VM and its two snapshots.

This is all fine if the subsequent reads are somewhat proximal in nature compared to the previous read
which caused the read cache to be allocated. But if the reads are extremely random in nature, the
current 1MB of read cache may not be utilized, leading to additional read cache usage.

vmware Page 12 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

active
Read Cache 10GB AN base disk
logical space B working set 1MB
active

Read Cache 10GB K 7//////// snap 1

logical space working set 4k
active e

Read Cache 10GB 7///, 4K ///// snarL) 2

logical space working set 4k
active MB

Read Cache 10GB W/W total read cache

logical space consumed 3MB

Each disk snapshot creates a vSAN object, which in turn consumes read cache reservation resources. If
the read cache is sized too small, or the I/O profile is not conducive to using the co-located blocks of
allocated read cache, performance may drop as the snapshot chain gets above 16 or more.

This does not affect all-flash vSAN (AF-VSAN) as it does not use the caching layer for reads. The flash
devices in the capacity layer satisfy reads.

3.4 Monitoring VSAN Read Cache

The Ruby vSphere Console (RVC) command vsan.whatif_host_failures can be used to monitor how
much read cache is currently being consumed. If using snapshots regularly with larger snapshot
chains, consider proactively checking read cache consumption with this command. Here is an example
of such a command. The amount of free read cache in the “Usage right now” column of RC reservation
is what should be monitored:

/localhost/IE-VSAN-DC/computers> 1ls

0 VSAN60 (cluster): cpu 109 GHz, memory 328 GB
/localhost/IE-VSAN-DC/computers> vsan.whatif host_ failures 0
Simulating 1 host failures:

o ————— e e e
| Resource

+ _________________
| HDD capacity

| Components

| RC reservations
m————————————————

................................... +
Usage after failure/re-protection |
___________________________________ +
95% used (118.93 GB free) |
1% used (26632 available) |
0% used (391.17 GB free)
___________________________________ +

67% used (1074.02 GB free)
1% used (35632 available)
0% used (521.57 GB free)

+———+ — +
————+ — +

3.5 vSAN Datastore Capacity Consumption Consideration

As mentioned previously, creating snapshots on vSAN creates a vSAN object, which in turn consumes
VSAN datastore capacity. These snapshot are sparse objects, and thinly provisioned. Assuming a worst
case scenario when a guest OS is randomly writing to disk, and the VM’s running point is a snapshot
delta, unusual and rapid capacity consumption may result, in excess of what one would normally
expect. Depending on the scenario, this may cause a surprise out-of-space condition in addition to
high capacity consumption. This once again relates to the allocation mechanism on vSAN. The
following diagram may help to explain the behavior.

Vmwal’e’ Page 13 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

VirstoFS 10GB
logical space

VirstoFS 10GB
logical space

VirstoFS 10GB
logical space

vsanSparse Tech Note

/98

unit of allocatior

4MB

unit of allocation

unit of allocation

4MB

unit of allocation

4MB

unit of allocation

VSAN FS base disk
allocation based on

4MB

snap 1
write block size
based on 512b

snap 2
write block size
based on 512b

B8
aMB 4amB

total space consumed

Tz

multiple units of

VirstoFS 10GB allocation total 20MB

logical space

Logical units of space on the vSAN (v2) on-disk format are allocated in 4MB chunks. However vSAN
writes are done in 512-byte blocks. Take the above example where 4MB of disk space is allocated to
the base disk to accommodate a write by the guest OS. Then a virtual machine snapshot (“snap 1”) is
taken. Next, with the running point of the virtual machine on “snap 1% there are two new 512-byte
random writes made by the guest OS that requires two new 4MB chunks to be allocated from the
VSAN datastore (VirstoFS). Then a new snapshot of the virtual machine is taken, “snap 2” and once
again there are two new 512-byte random writes which requires another two new 4MB chunks to be
allocated from the VSAN datastore. So with a total of 2KB of snapshot writes, 20MB of capacity has
been allocated to his virtual machine and its snapshots.

Please keep in mind that what we are showing here is a worst-case scenario. We are assuming a
workload that does 512 bytes writes, evenly spaced over every 4MB of disk space. Note that there is
no proximal or sequential writes in this example. In this case, 4MB of disk space consumed for per
every 512 bytes. This is not normal or common behavior for a workload. There is also a worse case
assumption here that no additional writes hit the same 4MB chunks until the test ends. This is an even
harsher (and less realistic) assumption.

Snapshots will never grow larger than the size of the original base disk. The size of the delta will be
dependent on the number of changes made since the snapshot was taken.

This behavior applies to both all flash and hybrid versions of VSAN 6.0.

3.6 Monitoring vSAN Capacity

The VSAN datastore capacity can be checked from the vSphere Web Client. Alternatively, the RVC
command vsan.disks_stats can be used to monitor VSAN datastore capacity. If using snapshots
regularly with 1/O intensive virtual machines, consider proactively checking datastore capacity with
this command.

vmware

Page 14 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

/localhost/IE-VSAN-DC/computers> vsan.disks_stats 0

2015-03-12 11:08:44 +0000: Fetching VSAN disk info from cs-ie-h04.ie.local (may take a moment)

2015-03-12 11:08:44 +0000: Fetching VSAN disk info from cs-ie-h0l.ie.local (may take a moment)

2015-03-12 11:08:44 +0000: Fetching VSAN disk info from cs-ie-h02.ie.local (may take a moment)

2015-03-12 11:08:44 +0000: Fetching VSAN disk info from cs-ie-h03.ie.local (may take a moment)

2015-03-12 11:08:47 +0000: Done fetching VSAN disk infos

F—— + + + + —— + + + +
| | | | Num | Capacity | | | Status

| DisplayName | Host | isSSD | Comp | Total | Used | Reserved | Health |
- + + + + + + +
| naa.600508b1001c6lcedd42b0c3£fbf55132 | cs-ie-h0l.ie.local | SSD |10 | 186.27 GB | 0% | 0 % | OK (v2)

| naa.600508b1001c3ea7838c0436dbe6d7a2 | cs-ie-h0l.ie.local | MD | 19 | 136.44 GB | 68 % | 67 % | OK (v2)

| naa.600508b1001ccd5d506e7edl9c40a64c | cs-ie-h0l.ie.local | MD | 15 | 136.44 GB | 76 % | 75 % | OK (v2)

| naa.600508b1001c388c92e817e43£fcd5237 | cs-ie-h0l.ie.local | MD | 33 | 136.44 GB | 72 % | 71 % | OK (v2)

| naa.600508b1001c79748e8465571b6£f4a46 | cs-ie-h0l.ie.local | MD |5 | 136.44 GB | 37 % | 37 % | OK (v2)

| naa.600508b1001cl6bebe256767284eaf88 | cs-ie-h0l.ie.local | MD | 13 | 136.44 GB | 68 % | 67 % | OK (v2) |
| naa.600508b1001c2ee%a6446e708105054b | cs-ie-h0l.ie.local | MD | 12 | 136.44 GB | 67 % | 66 % | OK (v2)

| naa.600508b1001c64816271482a56a48c3c | cs-ie-h0l.ie.local | MD | 15 | 136.44 GB | 73 % | 73 % | OK (v2)

| naa.600508b1001c64b76c8ceb56e816a89d | cs-ie-h02.ie.local | SSD |10 | 186.27 GB | 0% | 0 % | OK (v2)

naa.600508b1001cOccOba2a3866cf8e28be	cs-ie-h02.ie.local	MD	15	136.44 GB	65 %	65 %	OK (v2)
naa.600508b1001c19335174d82278dee603	cs-ie-h02.ie.local	MD	14	136.44 GB	69 %	68 %	OK (v2)
naa.600508b1001cb2234d6££4£7b1144£59	cs-ie-h02.ie.local	MD	13	136.44 GB	72 %	13 %	OK (v2)
naa.600508b1001c07d525259%9e83da9541bf	cs-ie-h02.ie.local	MD	12	136.44 GB	66 %	59 %	OK (v2)

| naa.600508b1001ca36381622ca880f3aacd | cs-ie-h02.ie.local | MD | 23 | 136.44 GB | 62 % | 59 % | OK (v2) |
- + + + + + + +

| naa.600508b1001c9cB8b5£6£0d7a2be44433 | cs-ie-h03.ie.local | SSD (Y | 186.27 GB | 0% | 0 % | OK (v2) |
| naa.600508bl001ceefc4213ceb9b51cébed | cs-ie-h03.ie.local | MD | 13 | 136.44 GB | 69 % | 54 % | OK (v2)

| naa.600508b1001cla7£310269ccd51a4e83 | cs-ie-h03.ie.local | MD | 16 | 136.44 GB | 76 % | 60 % | OK (v2)

| naa.600508b1001c2b7a3d39534ac6beb92d | cs-ie-h03.ie.local | MD | 14 | 136.44 GB | 75 % | 74 % | OK (v2) |
| naa.600508b1001cd259ab7ef213cB87eaad7 | cs-ie-h03.ie.local | MD | 18 | 136.44 GB | 60 % | 58 % | OK (v2)

| naa.600508b1001cb11£3292fe743a0fd2e7 | cs-ie-h03.ie.local | MD | 12 | 136.44 GB | 61 % | 60 % | OK (v2)

| naa.600508b1001c9b93053e6dc3eadbflef | cs-ie-h03.ie.local | MD | 12 | 136.44 GB | 76 % | 76 % | OK (v2)

e —————— —— + + + —— +

| naa.600508b1001c29d8145d6ccl925e9fb9 | cs-ie-h04.ie.local | SSD |10 | 186.27 GB | 0% | 0 % | OK (v2)

| naa.600508b1001c846c000c3d9114ed71b3 | cs-ie-h04.ie.local | MD | 15 | 136.44 GB | 69 % | 60 % | OK (v2)

| naa.600508b1001c6a664d5d576299cec941 | cs-ie-h04.ie.local | MD | 12 | 136.44 GB | 63 % | 55 % | OK (v2)

| naa.600508b1001c4bB20b4dB0f3fBacfad5 | cs-ie-h04.ie.local | MD | 13 | 136.44 GB | 73 % | 66 % | OK (v2)

| naa.600508b1001cadff5d80ba7665b8f09a | cs-ie-h04.ie.local | MD | 29 | 136.44 GB | 52 % | 50 % | OK (v2)

| naa.600508b1001c258181£0a088£f6e40dab | cs-ie-h04.ie.local | MD | 12 | 136.44 GB | 74 % | 74 % | OK (v2)

| naa.600508b1001c51£3a696fe0bbbcb5096 | cs-ie-h04.ie.local | MD | 13 | 136.44 GB | 72 % | 72 % | OK (v2)
- -—— + + + -—— + +

/localhost/IE-VSAN-DC/computers>

Vl"ﬂwal’e’ Page 15 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

4. Conclusions

VMware’s advice is to proactively monitor the VSAN Datastore capacity and read cache consumption
on a regular basis when using snapshots intensively on vSAN.

Vl"ﬂwal’e’ Page 16 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

4.1 Snapshot Retention Period

VMware does not make the same recommendations for vsanSparse snapshots retention period as we
do for vmfsSparse/redo log format. In other words, you do not need to limit vsanSparse snapshot
usage to short periods of time (24 - 72 hours). However we would recommend regularly checking the
read cache usage and the VSAN Datastore capacity when using snapshots for long periods of time,
and if either of these appear to be impact by the scenarios outlined earlier, it would be good practice
to not use snapshots unnecessarily, freeing up resources for other uses.

4.2 Snapshots Per Chain

VMware supports the full maximum chain length of 32 snapshots when vsanSparse snapshots are
used. It is advisable however to not exceed 16 snapshot deltas per chain when running very random
workloads as performance degradation has been noticed. Once again, VMware recommends checking
the read cache consumption with the command provided previously to see if the number of snapshots
could be contributing to the performance issue. If it does appear to be a read cache depletion issue,
consider consolidating the number of snapshots in the snapshot chain to replenish the read cache.
Another option of course is to add additional cache resources to your vSAN hosts.

Vmwal’e’ Page 17 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

5. Appendix A: Other Snapshot
Formats

VMware supports multiple different snapshot formats. The type of snapshot format chosen is
dependent on many factors, including underlying storage and VMDK characteristics.

Vl"ﬂwal’e’ Page 18 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

5.1 vmfsSparse

vmfsSparse, commonly referred to as the redo log format, is the original snapshot format used by
VMware. It is the format used on VMFS, NFS (without VAAI-NAS) and vSAN 5.5. The vmfsSparse
snapshots use an allocation unit size of 512 bytes. As we shall see later, this small allocation unit size
can be a cause for concern with certain storage array implementations.

When a snapshot is taken of a base disk using the redo log format, a child delta disk is created. The
parent is then considered a point-in-time (PIT) copy. The running point of the virtual machine is now
the delta. New writes by the virtual machine go to the delta, but the base disk or other snapshots in the

chain satisfy reads.
w m New writes M

N)
RW RW gotothe RW | ‘gt
delta delta
VMDK VMDK-001 VMDK-002
(running) (running) (running)
Reads come RO Reads come RO
frovm frqm
delta or base VMDK delta or base VMDK-001
(PIT 1) (PIT 2)
RO
VMDK
(PIT 1)
Base Snapshot 1 Snapshot 2

When a consolidate operation is needed, in other words there is a wish to roll up all of the changes
from a point-in-time delta (PIT1) into (PIT2), we need to redo all the changes into the PIT1 delta and
update the PIT2 delta, as well as change the running point of the VM back to the PIT2 VMDK.

If you wanted to consolidate everything into the base disk, you could do this by consolidating each
snapshot, one at a time like we mentioned. There is of course another way to do it by consolidating the
whole chain (delete-all).

With a very long chain with many changes, it can take a considerable effort to redo all of the changes
in each of the snapshots in the chain to the base disk. This is especially true when there are many
snapshot deltas in the chain. Each delta’s set of changes needs to be committed in turn.

Another consideration is when a whole chain is consolidated and the base disk is thinly provisioned, it

may require additional space as snapshots changes are merged into the base disk, and this base disk
may grow in size.

vmware Page 19 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

Move running

point of VM back
to base
VMDK
(running)
Roll up changed
from PIT2 into
Base
Changed (AN N N N

blocks VMDK-001
(PIT 2)

Roll up changed
from PIT2 into

base
Changed seeBsen

blocks VMDK-002
(PIT 3)

One final item to highlight with the redo log format is the revert mechanism. This is quite
straightforward with redo logs as administrators can simply discard the chain of deltas and return to a
particular delta or base disk. In this example, the virtual machine was reverted to the point-in-time

held on the base disk by simply discarding the snapshot deltas holding the changes made since the
snapshots were taken:

Vl"ﬂwal’e’ Page 20 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

RW

VMDK
PIT1 - running

Discard the
snapshot/delta
chain

vmware Page 21 of 25

Copyright © 2017 VMware, Inc. All rights reserved

vsanSparse Tech Note

One major concern with vmfsSparse/redo log snapshots is that they can negatively affect the
performance of a virtual machine. Performance degradation is based on how long the snapshot or
snapshot tree is in place, the depth of the tree, and how much the virtual machine and its guest
operating system have changed from the time the snapshot was taken. Also, you might see a delay in
the amount of time it takes the virtual machine to power-on. VMware does not recommend running
production virtual machines from snapshots using redo log format on a permanent basis.

VMware also makes the recommendation that only 2-3 snapshots should be used in a chain. There are
more best practices guidance around redo log based snapshots in VMware KB article 1025279.

One final item to note is that the vmfsSparse snapshot block allocation unit size is 512 bytes. This will
become an important consideration when additional formats are discussed. For more information on
snapshots, please refer to VMware KB article 1015180.

5.2 Space Efficient (SE) Sparse

This snapshot format may be encountered on traditional storage, such as VMFS and NFS, when
VMware Horizon View is deployed. Introduced in vSphere 5.1, the SE Sparse Disk format (SE standing
for space efficient) introduces two new features to snapshots.

The first of these is the snapshot block size granularity in SE Sparse is now set to 4KB. This addresses a
concern with the vmfsSparse format mentioned earlier. A single 4KB guest OS write, when running on
a vmfsSparse snapshot, could result in significant write amplification. This single guest OS 4KB write
could generate multiple a number of write operations on the back-end storage array. These diagrams
should help to highlight this concern with the smaller 512-byte block size found in vmfsSparse/redo
logs.

In the diagrams below, an example is shown where a single 4KB 1/O is issued from the guest OS. The
issue with vmfsSparse disks is that they are backed by block allocation unit sizes of 512 bytes. This
means that in a worse case scenario, this 4KB I/O may involve 8 distinct 512-byte writes to different
blocks on the underlying VMFS volume, and in turn lead to 8 I/Os issued to the array, what is termed in
the industry as write amplification.

Although this is a worse case scenario, it is still plausible. In a case where a base disk has a database
installed using raw disks in the guest OS, and then a vmfsSparse snapshot is taken of it, 1/Os issued to
update the database tables may lead to this write amplification behaviour described here.

Let’s look at the vmfsSparse behavior more closely:

vmware Page 22 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

http://kb.vmware.com/kb/1025279
http://kb.vmware.com/kb/1015180

vsanSparse Tech Note

Partition 4KB Write
Created

Guest OS partitions may not be aligned to array

Guest 0OS

The 4KB Guest OS write is backed by 8 grains in the VMDK

VMDK vmfsSparse format grows in 16MB chunks, but grain size is 512 bytes.
Starting partition may not be aligned to track on the array.
4KB write could be located on non-contiguous grains.

Unified
Block
Size
(1mB)
Each 512 byte grain could be located on a
different block of the VMFS.
A May be up to 8 x 1/Os for single Guest OS initiated 4KB I/O.
rray
block
size
4KB .

Single 4BK write in the Guest results in many writes on array.
If 1/O is not on 4KB boundary, even more writes incurred.

Notice the write amplification shown above. This is where SE Sparse can help. Using SE Sparse with a
new block allocation size of 4KB, the 4KB 1/O from the Guest OS will use a single block in the VMDK,
which in turn will use a single VMFS block, and generate a single I/O to the array.

Vl"ﬂwal’e’ Page 23 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

Partition 4KB Write
Created

Guest OS partitions may not be aligned to array

Guest OS

The 4KB Guest OS write is backed by 1 grain in the VMDK

16MB
(4000 x 4KB)

VMDK SESparse format grows in 16MB chunks, but grain size 4KB.
Guest OS partition will be aligned to array track as a result.

4KB write will now be a single VMDK grain.
Unified
Block
Size

(1mB)
Each 4KB grain (Guest I/0) will be located on a single VMFS block

Array
block
size
4KB

Single 4BK write in the Guest results in single write on array.

The second enhancement to SE Sparse format is the ability to reclaim previously used space within the
guest OS. This stale data is data that was previously written to, but is currently in unaddressed blocks

in a file system/database. SE Sparse disks, through the introduction of a new shrink and wipe
operation, allow disks based on these formats to shrink in size.

vmware

Page 24 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

vsanSparse Tech Note

v
v

Initiate Scan filesystem
Wipe for unused — Filesystem
VMware space
Tools
Inform VMkernel
about unused blocks
ESXi Via SCSI UNMAP

vSCSI Layer

v

Initiate Shrink which

Reorganises SE Sparse issues SCSI UNMAP
disk to create contiguous command and reclaims
free space at end of disk blocks on array

There are only two very specific use cases for SE Sparse Disks.

The scope was initially restricted in vSphere 5.1 to a VMware View use case when VMware View
Composer uses “Linked Clones” for the rollout of desktops. VMware View desktops typically benefit
from the new 4KB block allocation unit size as it addresses the partial write and alignment issues
experienced by some storage arrays when the 512 bytes block allocation unit size found in the
vmfsSparse format is used for linked clones.

SE Sparse Disks also gives far better space efficiency to desktops deployed on this virtual disk format
since it has the ability to reclaim stranded space from within the Guest OS.

In vSphere 5.5, the scope of SE Sparse disk format was extended to include snapshots of VMDK disks
that are larger than 2TB (the actual size is 2TB minus 512 bytes to be exact). vSphere 5.5 introduced
support for VMDK size of up to 62TB, although vSAN 5.5 did not support this larger size. When a
snapshot is taken of these large disks, the SE Sparse format is used for the snapshot.

\m‘lwal’e’ Page 25 of 25

Copyright © 2017 VMware, Inc. All rights reserved.

